Transforming the nature of tissue closure

With its unique bidirectional barbed design, the Quill™ Knotless Tissue-Closure Device is the only one that completely eliminates the need to tie knots and the potential for knot-related complications in soft tissue closure.

May make soft tissue approximation faster and easier by replacing knots with running closure.

Engineered to evenly distribute tension along the closure.

Outperformed same-size conventional suture material in both tensile strength and tissue-holding capacity in in-vitro testing.

The unique bidirectional barbed design may provide an easy transition from the classic bi-armed Van Velthoven technique for securing the urethrovésical anastomosis.
Especially well suited to robotic urologic procedures

- No need to tie knots, which can be time-consuming in the robotic space
- The Quill™ device avoids the problem of “broken knots” that can occur due to the lack of haptic feedback
- Maintains third-arm tension—potentially expanding your field of vision

Demonstrated advantages in forming urethrovesical anastomosis in RARP procedures²

- The continuous tension of the Quill™ device reduces the risk of bladder “recoil” when preparing for urethrovesical anastomosis
- Designed to achieve more “watertight” seals—with fewer gaps and more consistent tension and hold around the closure
- The Quill™ device may also be useful in bladder/posterior repair during RARP (robot-assisted radical prostatectomy) and in robot-assisted radical cystectomy

In an in vitro study performed with the da Vinci Surgical System™ comparing standard Monocryl™ sutures with the Quill™ device²:

- The Quill™ device was rated equally secure—and maintained its hold even when every fourth suture was cut, a test that caused the complete disruption of the standard suture
- The Quill™ device was significantly faster—enabling the surgeon to spend approximately 10% less time performing urethrovesical anastomoses compared with the Monocryl™ suture (P<0.05)

Learn more about how the Quill™ device is transforming the nature of tissue closure at www.angioedupro.com.